Sklearn의 datasets에서 지원하는 make_circle 루틴을 사용하여 원형의 hyperplane 즉 Decision Boundary 가 원형인 비선형 예제를 다루어 보자. 헤더 영역에서 sklearn.datasets를 불러들이면 make_circles 루틴 사용이 가능하다.
Make_circles 루틴에서 noise 는 내부 원에 해당하는 데이터와 외곽 원에 속한 데이터를 서로 반대 영역에 섞어 넣는 효과를 준다. 그 값이 0.0 이라면 그러한 섞임이 전혀 없음을 뜻한다. factor 는 내부 원과 외부 원의 축척 비율로서 default 가 0.8 이다.
XOR 코드의 입력 데이터 준비 부분에서 이정도만 수정하면 Circle 문제를 실행할 수 있다. 다음 결과를 관찰해 보면 타원형으로 보이지만 좌표축을 보면 원임을 즉각 알 수 있다. Accuracy 는 비슷해 보인다.
#Circle_SVM_softmax_01.py
from sklearn import __version__ as sklearn_version
from sklearn.svm import SVC
from sklearn.datasets import make_circles
import numpy as np
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.01):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
#print(x1_min.shape)
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
#print('xx1,xx2=',xx1,xx2)
P=np.array([xx1.ravel(), xx2.ravel()])
#print('P=',P.T)
#print(classifier)
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
#print('Z.shape=',Z.shape)
#print('Z=',Z)
Z = Z.reshape(xx1.shape)
#print('Z.reshape',Z)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.grid(True)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0],
y=X[y == cl, 1],
alpha=0.8,
c=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')
# highlight test samples
if test_idx:
# plot all samples
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
edgecolor='black',
alpha=1.0,
linewidth=1,
marker='o',
s=100,
label='test set')
np.random.seed(1)
pts = 200
X_xor, y_xor = make_circles(n_samples=pts, noise=0.2, factor=0.5,
random_state=1)
plt.scatter(X_xor[:,0], X_xor[:, 1])
plt.show()
#Support Vector Machine "RBF"
svm = SVC(kernel='rbf', random_state=0, gamma=2.0, C=1.0)
svm.fit(X_xor, y_xor)
plot_decision_regions(X_xor, y_xor,classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
#Following is method to convert numpy array to tensor
import tensorflow as tf
import time
start_time = time.time()
def fn(X,W1,b1,W2,b2):
#print(X.shape)
hypothesis = tf.nn.softmax((tf.matmul(X, W2) + b2)*(tf.matmul(X, W1) + b1))
return hypothesis
def tf_plot_decision_regions(X_xor, y, hypothesis, predicted, test_idx=None, resolution=0.01):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X_xor[:, 0].min() - 1, X_xor[:, 0].max() + 1
x2_min, x2_max = X_xor[:, 1].min() - 1, X_xor[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
print(xx1.shape)
XX = np.array([xx1.ravel(), xx2.ravel()]).T
#print(XX.shape)
h, p = sess.run([hypothesis, predicted], feed_dict={X: XX })
#print(p)
p = p.reshape(xx1.shape)
plt.contourf(xx1, xx2, p, alpha=0.3, cmap=cmap)
plt.grid(True)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X_xor[y == cl, 0],
y=X_xor[y == cl, 1],
alpha=0.8,
c=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')
# highlight test samples
if test_idx:
# plot all samples
X_test, y_test = X_xor[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
edgecolor='black',
alpha=1.0,
linewidth=1,
marker='o',
s=100,
label='test set')
#Training Data
Y_xor = np.zeros([pts,2])
Y_xor[y_xor == 0] = [1., 0.]
Y_xor[y_xor == 1] = [0., 1.]
#print(Y_xor)
X_xor = np.float32(X_xor)
Y_xor = np.float32(Y_xor)
#print(Y_xor)
#print(X_xor.shape)
#print(Y_xor.shape)
#hyperparameter
learning_rate = 0.0001
training_epochs = 40000
display_steps = 10000
#Network parameters
n_input = 2
dof1 = 2
#Graph Nodes
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, dof1])
#Weights and Biases, model, loss and optimizer
W0 = tf.Variable(tf.random_normal([n_input, dof1], stddev=0.01))
b0 = tf.Variable(tf.random_normal([dof1], stddev=0.01))
W1 = tf.Variable(tf.random_normal([n_input, dof1], stddev=0.01))
b1 = tf.Variable(tf.random_normal([dof1], stddev=0.01))
W2 = tf.Variable(tf.random_normal([n_input, dof1], stddev=0.01))
b2 = tf.Variable(tf.random_normal([dof1], stddev=0.01))
#hypothesis
hypothesis = fn(X,W1,b1,W2,b2)
# cost/loss function
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=hypothesis, labels=Y))
#optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)
predicted = tf.cast(hypothesis[:, 0] < 0.5, dtype=tf.float32)
print(predicted.shape)
#predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(hypothesis,1), tf.argmax(Y,1)), dtype=tf.float32))
#Initializing global variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
_, c, w1, B1, w2, B2 = sess.run([optimizer, cost, W1, b1, W2, b2], feed_dict={X: X_xor, Y: Y_xor})
#if(epoch + 1) % display_steps == 0:
#print( "Epoch: ", (epoch+1), "Cost: ", c, w1, B1, w2, B2 )
print("Optimization Finished!")
# Accuracy report
h, p, a = sess.run([hypothesis, predicted, accuracy],feed_dict={X: X_xor, Y: Y_xor})
#print("\nHypothesis:\n", h, "\nCorrect:\n", p, "\nAccuracy: ", a)
#print(p.shape)
p = p.reshape(pts,1)
#print(p)
tf_plot_decision_regions(X_xor, y_xor, hypothesis, predicted)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
sess.close()
end_time = time.time()
print( "\nCompleted in ", end_time - start_time , " seconds")
'머신러닝' 카테고리의 다른 글
1-1 윈도우즈 10 아나콘다3(64비트)에서 TensorFlow 2.x 업그레이드 설치 (0) | 2020.01.19 |
---|---|
1-10 Moon Decision Boundary Classification: SVC vs TensorFlow Cubic (0) | 2020.01.13 |
1-8 TensorFlow Softmax Classification에서 Hypothesis Contour 작도 (0) | 2020.01.12 |
1-7 Scikit SVC vs TensorFlow Softmax Classification For Iris Flowers Dataset (0) | 2020.01.12 |
1-6 활성화 함수 Softmax에 의한 XOR 예제 TensorFlow 코딩 (0) | 2020.01.10 |